Exercise 1.33

Vector $\overrightarrow{\boldsymbol{A}}$ has y-component $A_{y}=+13.0 \mathrm{~m} . \overrightarrow{\boldsymbol{A}}$ makes an angle of 32.0° counterclockwise from the $+y$-axis. (a) What is the x-component of $\overrightarrow{\boldsymbol{A}}$? (b) What is the magnitude of $\overrightarrow{\boldsymbol{A}}$?

Solution

Draw the vector \mathbf{A} in the $x y$-plane and decompose it into components along the x - and y-axes.

$$
A=A_{x}+A_{y}
$$

The triangle involving the magnitudes of these vectors is shown below.

Use trigonometry to determine $\left|\mathbf{A}_{x}\right|$ and the magnitude $|\mathbf{A}|$.

$$
\begin{aligned}
& \tan 32^{\circ}=\frac{\left|\mathbf{A}_{x}\right|}{13.0} \quad \rightarrow \quad\left|\mathbf{A}_{x}\right|=13.0 \tan 32^{\circ} \approx 8.12 \mathrm{~m} \\
& \cos 32^{\circ}=\frac{13.0}{|\mathbf{A}|} \quad \rightarrow \quad|\mathbf{A}|=\frac{13.0}{\cos 32^{\circ}} \approx 15.3 \mathrm{~m}
\end{aligned}
$$

Since \mathbf{A}_{x} points to the left in the negative x-direction, there's a minus sign in the x-component of A: $A_{x} \approx-8.12 \mathrm{~m}$.

$$
\mathbf{A}_{x}=\left\langle A_{x}, 0\right\rangle \approx\langle-8.12,0\rangle \mathrm{m}
$$

