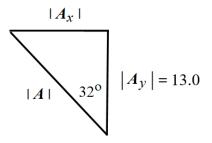

## Exercise 1.33


Vector  $\overrightarrow{A}$  has y-component  $A_y = +13.0$  m.  $\overrightarrow{A}$  makes an angle of 32.0° counterclockwise from the +y-axis. (a) What is the x-component of  $\overrightarrow{A}$ ? (b) What is the magnitude of  $\overrightarrow{A}$ ?

## Solution

Draw the vector  $\mathbf{A}$  in the xy-plane and decompose it into components along the x- and y-axes.



The triangle involving the magnitudes of these vectors is shown below.



Use trigonometry to determine  $|\mathbf{A}_x|$  and the magnitude  $|\mathbf{A}|$ .

$$\tan 32^{\circ} = \frac{|\mathbf{A}_x|}{13.0} \rightarrow |\mathbf{A}_x| = 13.0 \tan 32^{\circ} \approx 8.12 \text{ m}$$
  
 $\cos 32^{\circ} = \frac{13.0}{|\mathbf{A}|} \rightarrow |\mathbf{A}| = \frac{13.0}{\cos 32^{\circ}} \approx 15.3 \text{ m}$ 

Since  $\mathbf{A}_x$  points to the left in the negative x-direction, there's a minus sign in the x-component of  $\mathbf{A}$ :  $A_x \approx -8.12$  m.

$$\mathbf{A}_x = \langle A_x, 0 \rangle \approx \langle -8.12, 0 \rangle$$
 m